试题

题目:
青果学院(2013·常熟市模拟)如图,已知双曲线y=
k
x
(k>0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C.点A在x轴上.若△DOC的面积为3,则k=
4
4

答案
4

青果学院解:如图,过D点作DE⊥x轴,垂足为E.
∵Rt△OAB中,∠OAB=90°,
∴DE∥AB,
∵D为Rt△OAB斜边OB的中点D,
∴DE为Rt△OAB的中位线,
∵△OED∽△OAB,
OD
OB
=
1
2

∵双曲线的解析式是y=
k
x
(k>0)

∴S△AOC=S△DOE=
1
2
k,
∴S△AOB=4S△DOE=2k,
由S△AOB-S△AOC=S△OBC=2S△DOC=6,得2k-
1
2
k=6,
解得k=4.
故答案为:4.
考点梳理
反比例函数系数k的几何意义.
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=
1
2
|k|.
主要考查了反比例函数y=
k
x
(k>0)
中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为
1
2
|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
压轴题.
找相似题