试题
题目:
(2013·成都一模)如图,是反比例函数y=
k
1
x
和y=
k
2
x
(k
1
<k
2
)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S
△AOB
=2,则k
2
-k
1
的值为
4
4
.
答案
4
解:设A(a,b),B(c,d),
代入得:k
1
=ab,k
2
=cd,
∵S
△AOB
=2,
∴
1
2
cd-
1
2
ab=2,
∴cd-ab=4,
∴k
2
-k
1
=4,
故答案为:4.
考点梳理
考点
分析
点评
反比例函数系数k的几何意义.
设A(a,b),B(c,d),代入双曲线得到k
1
=ab,k
2
=cd,根据三角形的面积公式求出cd-ab=4,即可得出答案.
本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd-ab=4是解此题的关键.
找相似题
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·通辽)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=-
6
x
和y=
4
x
的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
(2012·辽阳)如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥y轴于点C,连接BC.若△ABC的面积是4,则这个反比例函数的表达式是( )
(2012·呼伦贝尔)如图,四边形OABC是边长为2的正方形,反比例函数
y=
k
x
的图象过点B,则k的值为( )
(2012·抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为( )