试题
题目:
(2010·遵义)如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=
k
x
(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为
4
3
4
3
.
答案
4
3
解:∵点P(2,3)在双曲线y=
k
x
(k≠0)上,
∴k=2×3=6,
∴y=
6
x
,
当y=2时,x=3,即M(3,2).
∴直线OM的解析式为y=
2
3
x,
当x=2时,y=
4
3
,即C(2,
4
3
).
∴△OAC的面积=
1
2
×2×
4
3
=
4
3
.
故答案为:
4
3
.
考点梳理
考点
分析
点评
专题
反比例函数系数k的几何意义;待定系数法求一次函数解析式.
由于点P(2,3)在双曲线y=
k
x
(k≠0)上,首先利用待定系数法求出k的值,得到反比例函数的解析式,把y=2代入,求出a的值,得到点M的坐标,然后利用待定系数法求出直线OM的解析式,把x=2代入,求出对应的y值即为点C的纵坐标,最后根据三角形的面积公式求出△OAC的面积.
本题考查用待定系数法求函数的解析式及求图象交点的坐标及三角形的面积,属于一道中等综合题.
计算题;压轴题.
找相似题
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·通辽)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=-
6
x
和y=
4
x
的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
(2012·辽阳)如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥y轴于点C,连接BC.若△ABC的面积是4,则这个反比例函数的表达式是( )
(2012·呼伦贝尔)如图,四边形OABC是边长为2的正方形,反比例函数
y=
k
x
的图象过点B,则k的值为( )
(2012·抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为( )