试题
题目:
如图,函数
y=
3
x
的图象与矩形·OABC的边AB、BC交于M、N两点,O为坐标原点,A点在x轴上,C点在y轴上,B(4,2),那么四边形OMBN的面积为( )
A.5
B.6.5
C.6
D.7
答案
A
解:∵B点的坐标是(4,2),
∴OA=4,OC=2,
∴S
矩形OABC
=4×2=8,
∵反比例函数的解析式是:
y=
3
x
,
∴S
△OCN
=S△OAM=
3
2
,
∴S四边形OMBN=S
矩形OABC
-S
△OCN
-S
△OAM
=8-
3
2
-
3
2
=5.
故选A.
考点梳理
考点
分析
点评
反比例函数系数k的几何意义.
根据B的坐标可以得到矩形的边长,则面积可以求得,然后根据反比例函数k的几何意义即可求得△OCN和△OAM的面积,据此即可求解.
本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.
找相似题
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·通辽)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=-
6
x
和y=
4
x
的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
(2012·辽阳)如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥y轴于点C,连接BC.若△ABC的面积是4,则这个反比例函数的表达式是( )
(2012·呼伦贝尔)如图,四边形OABC是边长为2的正方形,反比例函数
y=
k
x
的图象过点B,则k的值为( )
(2012·抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为( )