试题
题目:
(2011·锡山区一模)如图,A、B是双曲线
y=
k
x
(k>0)
上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S
△AOC
=6.则k的值为( )
A.1
B.2
C.4
D.无法确定
答案
C
解:分别过点A、B作x轴的垂线,垂足分别为D、E.
则AD∥BE,AD=2BE=
k
a
,
∴B、E分别是AC、DC的中点.
∴△ADC∽△BEC,
∵BE:AD=1:2,
∴EC:CD=1:2,
∴EC=DE=a,
∴OC=3a,
又∵A(a,
k
a
),B(2a,
k
2a
),
∴S
△AOC
=
1
2
AD×CO=
1
2
×3a×
k
a
=
3k
2
=6,
解得:k=4.
故选C.
考点梳理
考点
分析
点评
专题
反比例函数系数k的几何意义.
分别过点A、B作x轴的垂线,垂足分别为D、E,那么由AD∥BE,AD=2BE,可知B、E分别是AC、DC的中点,得出OC=3a,
进而求出S
△AOC
=
1
2
AD×CO=
1
2
(a+2a)×
k
a
=
3k
2
=6,即可求出k的值.
本题主要考查了反比例函数的性质、三角形的中位线的判定及梯形的面积公式,体现了数形结合的思想,同学们要好好掌握.
常规题型;压轴题.
找相似题
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·通辽)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=-
6
x
和y=
4
x
的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
(2012·辽阳)如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥y轴于点C,连接BC.若△ABC的面积是4,则这个反比例函数的表达式是( )
(2012·呼伦贝尔)如图,四边形OABC是边长为2的正方形,反比例函数
y=
k
x
的图象过点B,则k的值为( )
(2012·抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为( )