试题
题目:
(2002·青海)如图,过反比例函数y=
1
x
(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S
1
、S
2
,比较它们的大小,可得( )
A.S
1
>S
2
B.S
1
=S
2
C.S
l
<S
2
D.大小关系不能确定
答案
B
解:由反比例函数系数k的几何意义可得:S
△AOC
=S
△BOD
;
又S
△AOC
=S
△AEO
+S
△OEC
,S
△BOD
=S
△OEC
+S
梯形CEBD
,
所以S
△AOE
=S
梯形CEBD
,即S
1
=S
2
.
故选B.
考点梳理
考点
分析
点评
专题
反比例函数系数k的几何意义.
从反比例图象上任意找一点向某一坐标轴引垂线,加上连接原点到这一点的线所构成的三角形面积等于S=
1
2
|k|.
此题主要考查了反比例函数中比例系数k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
1
2
|k|.
压轴题;数形结合.
找相似题
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·通辽)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=-
6
x
和y=
4
x
的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
(2012·辽阳)如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥y轴于点C,连接BC.若△ABC的面积是4,则这个反比例函数的表达式是( )
(2012·呼伦贝尔)如图,四边形OABC是边长为2的正方形,反比例函数
y=
k
x
的图象过点B,则k的值为( )
(2012·抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为( )