答案
(1)证明:∵等腰梯形ABCD中,AD∥BC,
∴AB=CD,∠DCB=∠ABC,∠D+∠DCB=180°,
∵∠ABE+∠ABC=180°,
∴∠D=∠ABE,
∵在△AEB和△CAD中
,
∴△AEB≌△CAD;
(2)解:∵四边形ABCD是等腰梯形,AD∥BC,
∴∠D=∠BAD=100°,
∵AD=DC,
∴∠DCA=∠DAC=
(180°-∠D)=40°,
∵由(1)知:△AEB≌△CAD,
∴∠E=∠DAC=40°.
(1)证明:∵等腰梯形ABCD中,AD∥BC,
∴AB=CD,∠DCB=∠ABC,∠D+∠DCB=180°,
∵∠ABE+∠ABC=180°,
∴∠D=∠ABE,
∵在△AEB和△CAD中
,
∴△AEB≌△CAD;
(2)解:∵四边形ABCD是等腰梯形,AD∥BC,
∴∠D=∠BAD=100°,
∵AD=DC,
∴∠DCA=∠DAC=
(180°-∠D)=40°,
∵由(1)知:△AEB≌△CAD,
∴∠E=∠DAC=40°.