试题
题目:
(2011·泰安模拟)如图,在等腰梯形ABCD中,AB∥CD,对角线AC⊥BC,∠B=60°,BC=2cm,则梯形ABCD的面积为( )
A.
3
3
cm
2
B.6cm
2
C.6
6
cm
2
D.12cm
2
答案
A
解:过点C作CE⊥AB,
∵AC⊥BC,∠B=60°,
∴∠CAB=30°,
∵BC=2cm,
∴AB=4cm,AC=2
3
cm,
∴CE=
3
cm,
∵梯形ABCD是等腰梯形,CD∥AB,
∴∠B=∠DAB=60°,∠CAB=∠DCA=30°,
∵∠CAB=30°,
∴∠DAC=∠DCA=30°,
∴CD=AD=BC=2cm,
∴梯形ABCD的面积=
1
2
(AB+CD)×CE=
1
2
(4+2)×
3
=3
3
cm
2
,
故选A.
考点梳理
考点
分析
点评
专题
等腰梯形的性质.
过点C作CE⊥AB,由已知可得∠CAB=30°,根据直角三角形中30度所对的角是斜边的一半可求得AB,AC,CE的长,再根据等腰梯形同一底的两角相等可推出∠DAC=∠DCA,从而可求得CD的长,最后根据等腰梯形的面积公式求解即可.
此题主要考查等腰梯形的性质:①等腰梯形是轴对称图形,它的对称轴是经过上下底的中点的直线;
②等腰梯形同一底上的两个角相等;
③等腰梯形的两条对角线相等.
计算题;压轴题.
找相似题
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
(2012·乐山)下列命题是假命题的是( )
(2011·宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )
(2011·扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )