试题
题目:
如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为( )
A.4cm
B.5cm
C.8cm
D.10cm
答案
C
解:∵BD平分∠ABC,
∴∠CDB=∠DBA=∠BDC=30°,
∴DC=CB=AD,
又∵∠A=60°,
∴△ABD是直角三角形,
设CD=x,则AD=CD=CB=x,AB=2AD=2x,
∴5x=40,
∴x=8cm.
故选C.
考点梳理
考点
分析
点评
专题
等腰梯形的性质.
根据BD平分∠ABC可判断出△DCB是等腰三角形,再结合∠A=60°可确定△ABD是直角三角形,从而设CD=x,利用周长可求出答案.
本题涉及到直角三角形的一个定理(直角三角形中30°角所对的直角边等于斜边的一半)以及等腰梯形的性质的运用.
计算题.
找相似题
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
(2012·乐山)下列命题是假命题的是( )
(2011·宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )
(2011·扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )