试题
题目:
如图,在等腰梯形ABCD中,AD=2cm,BC=4cm,AB=2cm,将等腰梯形ABCD的一条对角线BD沿BC平移到CE的位置,则四边形ABCE的面积是( )
A.10
B.
4
3
C.
5
3
D.
10
3
答案
C
解:依题意,AE∥DB,DE=BC.
∴四边形DBCE是平行四边形,
∴S
△DCE
=S
△BCD
,
又知等腰梯形ABCD中,AD=2cm,BC=4cm,AB=2cm,
∴S
等腰梯形ABCD
=S
△ABD
+S
△BCD
,
∵S
△BCD
=2S
△ABD
(高相等,底BC=2AD),
∵S
△BCD
=
1
2
CD·BD=
1
2
×2×2
3
=2
3
,
∴S
△ABD
=
3
,
∴S
四边形ABCE
=S
△DCE
+S
△ABD
+S
△BCD
=2
3
+
3
+2
3
=5
3
.
故选C.
考点梳理
考点
分析
点评
等腰梯形的性质;平移的性质.
根据平移的意义知四边形AEBD是平行四边形,S
△DCE
=S
△BCD
=
2
3
S
等腰梯形ABCD
,故求出等腰梯形的面积即可解决问题.
本题主要考查等腰三角形的性质和平移的知识点,解答本题的关键是找出图形中几个三角形的等量关系,本题难度不大.
找相似题
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
(2012·乐山)下列命题是假命题的是( )
(2011·宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )
(2011·扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )