试题
题目:
(2007·白云区二模)如图,在等腰梯形ABCD中,AB∥CD,对角线AC平分∠BAD,∠B=60°,CD=2cm,则梯形ABCD的周长为( )
A.8cm
B.10cm
C.12cm
D.无法计算
答案
B
解:∵AB∥CD,AC平分∠BAD,
∴∠DAC=∠CAB=∠DCA,
∴AD=CD=2,BC=AD=2.
∵ABCD为等腰梯形,
∴∠B=∠BAD=60°,
∴∠BAC=30°,∠ACB=90°.
∴AB=2BC=4.
∴梯形ABCD的周长=2+2+2+4=10(cm).
故选B.
考点梳理
考点
分析
点评
等腰梯形的性质.
根据CD∥AB,AC平分∠BAD可证CD=AD=BC=2;由角度得∠ACB=90°,从而得 AB=2BC=4.
此题考查等腰梯形的性质和特殊直角三角形的性质,属基础题.
找相似题
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
(2012·乐山)下列命题是假命题的是( )
(2011·宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )
(2011·扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )