试题
题目:
(2013·成都一模)如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件( )
A.AB=DC
B.∠1=∠2
C.AB=AD
D.∠D=∠B
答案
D
解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故本选项错误;
B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故本选项错误;
C、根据AB=AD和AD∥BC不能推出平行四边形,故本选项错误;
D、∵D∥BC,
∴∠1=∠2,
∵∠B=∠D,
∴∠BAC=∠DCA,
∴AB∥CD,
∴四边形ABCD是平行四边形,故本选项正确.
故选D.
考点梳理
考点
分析
点评
平行四边形的判定;平行线的判定与性质;三角形内角和定理;等腰梯形的性质.
根据等腰梯形的定义判断A;根据平行线的性质可以判断B;根据平行四边形的判定可判断C;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD即可.
本题主要考查对平行四边形的判定,等腰梯形的性质,三角形的内角和定理,平行线的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.
找相似题
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
(2012·乐山)下列命题是假命题的是( )
(2011·宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )
(2011·扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )