试题
题目:
(2010·烟台)如图,小区的一角有一块形状为等腰梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是( )
A.等腰梯形
B.矩形
C.菱形
D.正方形
答案
C
解:如图,连接对角线AC、BD.
∵点E为AD的中点,点F为AB的中点,
∴EF=
1
2
BD,同理可得:GH=
1
2
BD,FG=
1
2
AC,EH=
1
2
AC,
又等腰梯形的对角线相等,即AC=BD,
∴EF=GH=FG=EH,
所以连接各边中点的四边形是菱形.
故选C.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;菱形的判定.
根据梯形的对角线相等,所以连接各边中点的四边形是菱形.
本题考查连接四边形各边中点得到的四边形与原四边形对角线的关系:原四边形对角线相等,得到的四边形是菱形;原四边形对角线互相垂直,得到的四边形是矩形;原四边形对角线既相等又垂直,得到的四边形是正方形;原四边形对角线既不相等又不垂直,得到的四边形是平行四边形.需要熟练掌握.
应用题.
找相似题
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
(2012·乐山)下列命题是假命题的是( )
(2011·宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( )
(2011·扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )