数学
(2008·凉山州)如图所示,图形(1),(2),(3),(4)分别由两个相同的正三角形,正方形,正五边形,正六边形组成.本题中我们探索各图形顶点,边数,区域三者之间的关系.(例我们规定如图(2)的顶点数为16;边数为24,像A
1
A,AH为边,AH不能再算边,边与边不能重叠;区域数为9,它们由八个小三角形区域和中间区域ABCDEFGH组成,它们相互独立.)
(1)每个图形中各有多少个顶点?多少条边?多少个区域?请将结果填入表格中.
(2)根据(1)中的结论,写出a,b,c三者之间的关系表达式.
图序
顶点个数(a)
边数(b)
区域(c)
(1)
(2)
16
24
9
(3)
(4)
(2007·湘潭)如图,在正五边形ABCDE中,连接对角线AC,AD和CE,AD交CE于F.
(1)请列出图中两对全等三角形
△ABC≌△AED
△ABC≌△AED
,
△AFE≌△CFD
△AFE≌△CFD
.(不另外添加辅助线)
(2)请选择所列举的一对全等三角形加以证明.
(2007·临夏州)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:
用长度分别为2、3、4、5、6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.
(2006·江西)问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
(2005·兰州)如图,已知正三角形的边长2a
(1)求它的内切圆与外接圆组成的圆环的面积;
(2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积?
(3)将条件中的“正三角形”改为“正方形”、“正六边形”你能得出怎样的结论;
(4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环的面积.
(2003·重庆)电脑CPU蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”.现为了生产某种CPU蕊片,需要长、宽都是1cm的正方形小硅片若干.如果晶圆片的直径为10.05cm.问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由.(不计切割损耗)
(2003·宜昌)如图,矩形ABCD是一块需探明地下资源的土地,E是AB的中点,EF∥AD交CD于点F,探测装置(设为点P)从E出发沿EF前行时,可探测的区域是以点P为中心,PA为半径的一个圆(及其内部).当(探测
装置)P到达点P
0
处时,⊙P
0
与BC、EF、AD分别交于G、F、H点.
(1)求证:FD=FC;
(2)指出并说明CD与⊙P
0
的位置关系;
(3)若四边形ABGH为正方形,且三角形DFH的面积为(2
2
-2)平方千米,当(探测装置)P从点P
0
出发继续前行多少千米到达点P
1
处时,A、B、C、D四点恰好在⊙P
1
上.
(2003·南京)阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图中①的三角形被一个圆覆盖,②中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是
2
2
2
2
cm;
(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是
3
3
3
3
cm;
(3)长为2cm,宽为1cm的矩形被两个半径均为r的圆所覆盖,r的最小值是
2
2
2
2
cm.这两个圆的圆心距是
1
1
cm
(2003·安徽)如图是五角星,已知AC=a,求五角星外接圆的直径(结果用含三角函数的式子表示).
(2002·金华)试比较下面两个几何图形的异同,请分别写出它们的两个相同点和两个不同点.例如:相同点
:正方形的对角线相等,正五边形的对角线也相等.不同点:正方形是中心对称图形,正五边形不是中心对称图形.
相同点:(1)
都是轴对称图形
都是轴对称图形
;(2)
都有外接圆和内切圆
都有外接圆和内切圆
;
不同点:(1)
内角和不同
内角和不同
;(2)
对角线的条数不同
对角线的条数不同
.
第一页
上一页
8
9
10
11
12
下一页
最后一页
155299
155301
155304
155305
155307
155309
155311
155313
155315
155317