数学
已知如图,半径为2的⊙A与直线l相切于C,点B与⊙A在l的同旁,与l的距离BD=6,DC=15,点P为l上到A、B两点距离之和为最短的一点,试确定P点的位置,并求出PC和PD.
已知⊙O
1
和⊙O
2
外切于A(如图1),BC是它们的一条外公切线,B、C分别为切点,连接AB、AC,
(1)求证:AB⊥AC;
(2)将两圆外公切线BC变为⊙O
1
的切线,且为⊙O
2
的割线BCD(如图2),其它条件不变,猜想∠BAC+∠BAD的大小,并加以证明;
(3)将两圆外切变为两圆相交于A、D(如图3),其它条件不变,猜想:∠BAC+∠BDC的大小?并加以证明.
如图,AB是⊙O的直径,BC是⊙O的切线,AC交⊙O于D,AB=6,BC=8,则BD等于多少?
如图,AB是⊙O的直径,CD切⊙O于C点.AD交⊙O于点E.探索AC满足什么条件时,有AD⊥CD,并加以证明.
已知正方形ABCD的边长为1,以边BC为直径,在正方形内作半圆O,AE切⊙O于F,交CD于E,求DE:AE的值.
如图,△ABC是边长为1的等边三角形,⊙O分别切边AB、BC于 D、E两点,交AC于G、F两点.
(1)如图1,当
FG=
1
2
时,求⊙O的直径;
(2)如图2,当⊙O的直径为
3
2
时,求∠DEF的度数.
已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=
2
7
,sin∠BCD=
3
4
.
(1)求证:CD∥BF;
(2)求弦CD的长;
(3)求⊙O的半径.
如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:
成立
成立
.
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
如图,从点P向⊙O引两条切线PA、PB,切点A、B,BC为⊙O的直径,若∠P=60°,PA=6,求AC的长.
已知⊙O,半径为6米,⊙O外一点P,到圆心O的距离为10米,作射线PM,PN,使PM经过圆心O,PN与⊙O相切,切点为H.
(1)根据上述条件,画出示意图;
(2)求PH的长;
(3)有两动点A,B,同时从点P出发,点A以5米/秒的速度沿射线PM方向运动,点B以4米/秒的速度沿射线PN方向运动.设运动的时间为t(秒).当t为何值时,直线AB与⊙O相切?
第一页
上一页
24
25
26
27
28
下一页
最后一页
151986
151988
151991
151993
151995
151997
151999
152001
152004
152006