试题
题目:
如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:
成立
成立
.
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
答案
成立
(1)成立,理由如下:
连接OQ,
∵RQ是⊙O的切线,
∴OQ⊥QR,
∴∠OQB+∠BQR=90°.
∵OA⊥OB,
∴∠OPB+∠B=90°.
又∵OB=OQ,
∴∠OQB=∠B.
∴∠PQR=∠BPO=∠RPQ.
∴RP=RQ;
(2)如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立,
理由如下:连接OQ,
∵RQ是⊙O的切线,
∴OQ⊥QR,
∴∠OQB+∠PQR=90°.
∵OA⊥OB,
∴∠OPB+∠B=90°.
又∵OB=OQ,
∴∠OQB=∠B.
∴∠PQR=∠BPO=∠RPQ.
∴RP=RQ.
考点梳理
考点
分析
点评
切线的性质.
(1)首先连接OQ,由切线的性质,可得∴∠OQB+∠BQR=90°,又由OA⊥OB,可得∠OPB+∠B=90°,继而可证得∠PQR=∠BPO=∠RPQ,则可证得RP=RQ,
(2)如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立,连接OQ,证明思路同(1).
此题考查了切线的性质、等腰三角形的性质以及垂直的定义.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )