数学
如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AC=6,BD=8,求线段OE的长.
如图,在菱形ABCD中,AB=4,∠AND=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为
2
2
时,四边形AMDN是矩形;
②当AM的值为
4
4
时,四边形AMDN是菱形.
如图,在平行四边形ABCD中,E,F分别是边BC和AD上的点且BE=DF.
①线段AE与线段CF有怎样的数量关系和位置关系?并证明你的结论.
②若AE⊥BC,则四边形AECF是下列选项中的( )
A、梯形了;B、菱形;C、正方形;D、矩形.
已知:如图,在△ABC中,AD平分∠BAC,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.
(1)当AB≠AC时,猜想四边形ADCE形状,并加以证明;
(2)如图,若添加“AB=AC”,其他条件不变,求证:四边形ADCE为矩形;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形ADCE是一个正方形?(只需写出条件,不需证明)
如图,以△ABC的各边为一边向BC的同侧作正△ABD、正△BCF、正△ACE,若∠BAC=150°,求证:四边形AEFD为矩形.
(1)在等腰三角形ABC中AB=BC,∠ABC=90°,BD⊥AC,过D点作DE⊥DF,交AB于E,交BC于F.若AE=4,FC=3,求EF长.
(2)如图,将·ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
①求证:△ABF≌△ECF;
②若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
如图,在△ABC中,A、B两点关于直线DE对称;A、C两点关于直线DF对称,DE交AB于点E,交BC于点D;DF交AC于点F.
(1)试说明BD=CD;
(2)试判断四边形AEDF的形状,并说明理由.
如图,在·ABCD中,E,F为BC边上两点,且BE=CF,AF=DE
(1)试说明△ABF≌△DCE;
(2)判断四边形ABCD是哪种特殊平行四边形,并说明理由.
如图:已知:在·ABCD中,E、F分别是BC、AD的中点.
(1)试分析四边形AECF是什么四边形?并证明结论.
(2)当AB⊥AC时,四边形AECF是什么四边形?(不需证明)
(3)结合现有图形,请你添加一个条件,使其与原已知条件共同推出四边形AECF是矩形.
已知:如图,在△ABC中,D、E、F分别是AC、AB、BC的中点,且CE=
1
2
AB.
求证:四边形CFED是矩形.
第一页
上一页
159
160
161
162
163
下一页
最后一页
117829
117831
117833
117835
117837
117839
117841
117843
117845
117847