试题
题目:
如图,在平行四边形ABCD中,E,F分别是边BC和AD上的点且BE=DF.
①线段AE与线段CF有怎样的数量关系和位置关系?并证明你的结论.
②若AE⊥BC,则四边形AECF是下列选项中的( )
A、梯形了;B、菱形;C、正方形;D、矩形.
答案
解:①AE与CF平行且相等.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC;
∵BE=DF,
∴AD-DF=BC-BE,即AF=EC;
又∵AF∥EC,
∴四边形AECF是平行四边形;
∴AE与CF平行且相等.
②由①知:四边形AECF是平行四边形,当AE⊥BC时,∠AEC=90°,所以四边形AECF是矩形.
故选D.
解:①AE与CF平行且相等.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC;
∵BE=DF,
∴AD-DF=BC-BE,即AF=EC;
又∵AF∥EC,
∴四边形AECF是平行四边形;
∴AE与CF平行且相等.
②由①知:四边形AECF是平行四边形,当AE⊥BC时,∠AEC=90°,所以四边形AECF是矩形.
故选D.
考点梳理
考点
分析
点评
专题
矩形的判定;平行四边形的性质.
①可通过证四边形AECF是平行四边形,来判断AE、CF的数量和位置关系;
②由①证得四边形AECF是平行四边形,当AE⊥BC时,根据矩形的定义即可判定四边形AECF是矩形.
本题考查的是平行四边形的判定和性质,以及矩形的定义.
探究型.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )