试题
题目:
如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AC=6,BD=8,求线段OE的长.
答案
解:(1)四边形OCED是矩形.
理由如下:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形;
(2)在菱形ABCD中,∵AC=6,BD=8,
∴OC=
1
2
AC=
1
2
×6=3,OD=
1
2
BD=
1
2
×8=4,
∴CD=
OC
2
+OD
2
=
3
2
+4
2
=5,
在矩形OCED中,OE=CD=5.
解:(1)四边形OCED是矩形.
理由如下:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形;
(2)在菱形ABCD中,∵AC=6,BD=8,
∴OC=
1
2
AC=
1
2
×6=3,OD=
1
2
BD=
1
2
×8=4,
∴CD=
OC
2
+OD
2
=
3
2
+4
2
=5,
在矩形OCED中,OE=CD=5.
考点梳理
考点
分析
点评
菱形的性质;矩形的判定.
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,然后根据有一个角是直角的平行四边形是矩形解答;
(2)根据菱形的对角线互相平分求出OC、OD,再根据勾股定理列式求出CD,然后根据矩形的对角线相等求解.
本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )