答案
解:∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
又∵BD=BA,BF=BC,
∴△ABC≌△DBF,
∴AC=DF=AE,
同理可证△ABC≌△EFC,
∴AB=EF=AD,
∴四边形DAFEF是平行四边形(两组对边分别相等的四边形是平行四边形)
∵∠BAC=150°,
∴∠DAE=150°-∠DAB-∠EAC=90°,
∴四边形AEFD为矩形.
解:∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
又∵BD=BA,BF=BC,
∴△ABC≌△DBF,
∴AC=DF=AE,
同理可证△ABC≌△EFC,
∴AB=EF=AD,
∴四边形DAFEF是平行四边形(两组对边分别相等的四边形是平行四边形)
∵∠BAC=150°,
∴∠DAE=150°-∠DAB-∠EAC=90°,
∴四边形AEFD为矩形.