数学
(2010·眉山)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
(2010·临沂)如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.
(2009·伊春)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
(2009·孝感)三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场.过了一段时间,牧童B和牧童C又分别提出了新的划分方案.牧童B的划分方案如图2:三块矩形的面积相等,牧童的位置在三个小矩形的中心.牧童C的划分方案如图3:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等.请回答:
(1)牧童B的划分方案中,牧童
C
C
(填A、B或C)在有情况时所需走的最大距离较远;
(2)牧童C的划分方案是否符合他们商量的划分原则,为什么?(提示:在计算时可取正方形边长为2)
(2009·遂宁)如图,已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、
H分别是AB、AP、DP、DC的中点.
(1)求证:EF+GH=5cm;
(2)求当∠APD=90°时,
EF
GH
的值.
(2009·吉林)如图所示,矩形ABCD的周长为14cm,E为AB的中点,以A为圆心,AE长为半径画弧交AD于点F.以C为圆心,CB长为半径画弧交CD于点G.设AB=xcm,BC=ycm,当DF=DG时,求x,y的值.
(2009·防城港)如图,矩形ABCD中,点E、F分别在AB、BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.
(2009·恩施州)两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.请判断四边形BNDM的形状,并给出证明.
(2008·枣庄)如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落
在x轴上,记为B′,折痕为CE,已知tan∠OB′C=
3
4
.
(1)求B′点的坐标;
(2)求折痕CE所在直线的解析式.
如果要求如图零件的周长,至少要测量
4
4
条线段的长.
第一页
上一页
115
116
117
118
119
下一页
最后一页
116931
116933
116935
116937
116939
116941
116943
116945
116947
116949