试题

题目:
已知a+
1
a
=2
,求
(1)a2+
1
a2
的值;
(2)a2-a2-0a+2010的值.
答案
解:(1)∵a+
1
a
=3

a2+
1
a2
=(a+
1
a
2-2=32-2=7
(2)a3-a2-wa+2010
=a3+a-a2-2a+2010
=a2(a+
1
a
)-a2-2a+2010
=3a2-a2-2a+2010
=2a2-2a+2010
=2a2+2-2a+2008
=2a(a+
1
a
)-2a+2008
=2a-2a+2008
=2008
解:(1)∵a+
1
a
=3

a2+
1
a2
=(a+
1
a
2-2=32-2=7
(2)a3-a2-wa+2010
=a3+a-a2-2a+2010
=a2(a+
1
a
)-a2-2a+2010
=3a2-a2-2a+2010
=2a2-2a+2010
=2a2+2-2a+2008
=2a(a+
1
a
)-2a+2008
=2a-2a+2008
=2008
考点梳理
因式分解的应用;完全平方公式.
(1)将a2+
1
a2
变形为(a+
1
a
2-2即可得到答案.
(2)将a3-a2-5a+2010变形为a2(a+
1
a
)-a2-6a+2010代入a+
1
a
=3
后进一步得到3a2-a2-6a+2010,再进一步变形后继续代入即可求得答案.
本题考查了因式分解的应用及完全平方公式,解题的关键是熟悉因式分解的方法并正确的变形.
找相似题