试题

题目:
在直角坐标系中,设A(4,-5),B(8,-3),C(m,0),D(0,n),当四边形ABCD的周长最短时,
m
n
的值为
-
3
2
-
3
2

答案
-
3
2

解:如图所示,作B点关于x轴的对称点B'(8,3),A点关于y轴的对称点A'(-4,-5)再连接A'B',该直线A'B'交y轴于C,交x轴于D,
设直线A′B′的解析式为y=kx+b(k≠0),把点A'(-4,-5)、B'(8,3)代入得,
-5=-4k+b①
3=8k+b②

①-②得,k=
2
3
,代入②得,b=-
7
3

故此函数的解析式为:y=
2
3
x-
7
3

分别把C(m,0),D(0,n)代入得,
2
3
m-
7
3
=0,n=-
7
3

即m=
7
2
,n=-
7
3

m
n
=
7
2
×(-
3
7
)=-
3
2

故答案为:-
3
2

青果学院
考点梳理
轴对称-最短路线问题;坐标与图形性质.
由于AB长为定值,四边形ABCD周长最短其实就是AD+DC+BC最小不妨作出B点关于y轴的对称点B'(4,5),A点关于x轴的对称点A'(-8,-3)再连接A'B',该直线A'B'交y轴于C,交x轴于D,求出A′B′的解析式,把C、D点的坐标代入直线方程,求出m、n的值即可.
本题考查的是最短路线问题及用待定系数法求一次函数的解析式,利用轴对称的性质分别求出A′、B′两点的坐标是解答此题的关键.
找相似题