试题
题目:
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
A.2
7
+2
B.3
2
+2
C.4
3
D.2
5
+3
答案
A
解:如图,作点B关于AC的对称点E,连接EP、EB、ED、EC,则PB+PD=PE+PD,因此ED的长就是PB+PD的最小值,即当点P运动到ED与AC的交点G时,△PBD的周长最小.
∵A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,
∴AB=
12+4
=4,BC=4,AC=
12+4
=4,
∴△ABC是等边三角形,
从点D作DF⊥BE,垂足为F,因为BC=4,所以BD=2,
BE=2
4
2
-
2
2
=4
3
,
因为∠DBF=30°,所以DF=
1
2
BD=1,BF=
3
,EF=BE-BF=4
3
-
3
=3
3
,DE=
D
F
2
+E
F
2
=2
7
,
所以△PBD的周长的最小值是2+2
7
,
故选A.
考点梳理
考点
分析
点评
轴对称-最短路线问题;坐标与图形性质.
首先根据给出的点的坐标判定三角形ABC是等边三角形,作点B关于AC的对称点E,连接EP、EB、ED、EC,则PB+PD=PE+PD,因此ED的长就是PB+PD的最小值,即当点P运动到ED与AC的交点G时,△PBD的周长最小.
本题考查了等边三角形的判定和性质以及勾股定理的灵活运用,解本题的关键是作出恰当的图形,并且根据勾股定理求各边长.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.
如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为( )