试题
题目:
在平面直角坐标系中,已知A(1,1)、B(3,5),要在坐标轴上找一点P,使得△PAB的周长最小,则点P的坐标为( )
A.(0,1)
B.(0,2)
C.(
4
3
,0)
D.(0,2)或(
4
3
,0)
答案
B
解:∵线段AB的长度是确定的,
∴△PAB的周长最小就是PA+PB的值最小,
∵3>5,
∴点P在y轴上,
作点A关于y轴的对称点A′,连接A′B交y轴于点P,
∵A(1,1),
∴A′(-1,1),
设直线A′B的解析式为y=kx+b(k≠0),
∴
3k+b=5
-k+b=1
,解得
k=1
b=2
,
∴直线A′B的解析式为y=x+2,
当x=0时,y=2,
∴P(0,2).
故选B.
考点梳理
考点
分析
点评
轴对称-最短路线问题;坐标与图形性质.
因为AB的长度是确定的,故△PAB的周长最小就是PA+PB的值最小,因为3>5,所以点P在y轴上,作点A关于y轴的对称点A′,连接A′B交y轴于点P,求出P点坐标即可.
本题考查的是轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.