试题

题目:
青果学院已知点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC
(1)如图1,若点O在BC上,求证:AB=AC.
(2)如图2,若点O在△ABC内部,求证:AB=AC.
(3)猜想,若O点在△ABC的外部,AB=AC成立吗?
答案
青果学院证明:(1)过点O作OD⊥AB于D,作OE⊥AC于E,
则OD=OE,∠ODB=∠OEC=90°,
在Rt△BOD和Rt△COE中,
OD=OE
OB=OC

∴Rt△BOD≌Rt△COE(HL),
∴∠B=∠C,
∴AB=AC;

(2)过点O作OD⊥AB于D,OE⊥AC于E,
则OD=OE,∠ODB=∠OEC=90°,
在Rt△BOD和Rt△COE中,
OD=OE
OB=OC

∴Rt△BOD≌Rt△COE(HL),
∴∠DBO=∠ECO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;

青果学院(3)不一定成立.
证明:如图3,过点O作OD⊥AB于D,作OE⊥AC的延长线于点E,
则OD=OE,∠ODB=∠OEC=90°,
在Rt△BOD和Rt△COE中,
OD=OE
OB=OC

∴Rt△BOD≌Rt△COE(HL),
∴∠DBO=∠ECO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠DBC=∠ECB,
∴∠ABC=∠ACB,
∴AB=AC.
如图4,可知AB≠AC.
青果学院证明:(1)过点O作OD⊥AB于D,作OE⊥AC于E,
则OD=OE,∠ODB=∠OEC=90°,
在Rt△BOD和Rt△COE中,
OD=OE
OB=OC

∴Rt△BOD≌Rt△COE(HL),
∴∠B=∠C,
∴AB=AC;

(2)过点O作OD⊥AB于D,OE⊥AC于E,
则OD=OE,∠ODB=∠OEC=90°,
在Rt△BOD和Rt△COE中,
OD=OE
OB=OC

∴Rt△BOD≌Rt△COE(HL),
∴∠DBO=∠ECO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;

青果学院(3)不一定成立.
证明:如图3,过点O作OD⊥AB于D,作OE⊥AC的延长线于点E,
则OD=OE,∠ODB=∠OEC=90°,
在Rt△BOD和Rt△COE中,
OD=OE
OB=OC

∴Rt△BOD≌Rt△COE(HL),
∴∠DBO=∠ECO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠DBC=∠ECB,
∴∠ABC=∠ACB,
∴AB=AC.
如图4,可知AB≠AC.
考点梳理
角平分线的性质;全等三角形的判定与性质.
(1)首先过点O作OD⊥AB于D,作OE⊥AC于E,易证得Rt△BOD≌Rt△COE,即可得∠B=∠C,根据等角对等边的性质,即可证得AB=AC;
(2)首先过点O作OD⊥AB于D,作OE⊥AC于E,易证得Rt△BOD≌Rt△COE,然后又由OB=OC,根据等边对等角的性质,易证得∠ABC=∠ACB,根据等角对等边的性质,AB=AC;
(3)首先过点O作OD⊥AB于D,作OE⊥AC的延长线于点E,易证得Rt△BOD≌Rt△COE,然后又由OB=OC,根据等边对等角的性质,易证得∠ABC=∠ACB,根据等角对等边的性质,AB=AC.
此题考查了等腰三角形的判定与性质以及直角三角形全等的判定与性质.此题难度不大,注意数形结合思想的应用,注意掌握辅助线的作法.
找相似题