试题
题目:
如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是
31.5
31.5
.
答案
31.5
解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,
∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,
∴OD=OE=OF,
∴S
△ABC
=S
△OBC
+S
△OAC
+S
△OAB
=
1
2
×OD×BC+
1
2
×OE×AC+
1
2
×OF×AB
=
1
2
×OD×(BC+AC+AB)
=
1
2
×3×21=31.5.
故填31.5.
考点梳理
考点
分析
点评
角平分线的性质.
连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S
△ABC
=S
△OBC
+S
△OAC
+S
△OAB
,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.
此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.
找相似题
(2011·恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
(2000·安徽)如图,直线l
1
、l
2
、l
3
表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
(2009·临沂一模)如图,在△ABC中,点Q、P分别是边AC、BC上的点,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,且PR=PS,则下列结论:①AP平分∠BAC;②QP∥AB;③AS=AR;④△BPR≌△QSP,其中正确的有( )
(2009·江西模拟)如图,若AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于E,则要求AB与CD之间的距离,只需测量出( )
如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )