试题

题目:
点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC=
115°
115°

答案
115°

青果学院解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-50°=130°,
∵点O到△ABC三边的距离相等,
∴点O是△ABC角平分线的交点,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
×130°=65°,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
故答案为:115°.
考点梳理
角平分线的性质.
根据三角形内角和定理求出∠ABC+∠ACB=130°,再根据角平分线上的点到角的两边的距离相等判断出点O是△ABC角平分线的交点,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后在△OBC中,利用三角形内角和定理列式进行计算即可得解.
本题主要考查了角平分线上的点到角的两边的距离相等的性质,三角形的内角和定理,角平分线的定义,判断出点O是△ABC角平分线的交点是解题的关键,要注意整体思想的利用.
整体思想.
找相似题