试题

题目:
青果学院如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM和DM的大小关系是(  )



答案
B
解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB,
∴PC=PD,
在△POC和△POD中,
OP=OP
PC=PD

∴△POC≌△POD(HL),
∴OC=OD,
在△OCM和△ODM中,
OC=OD
∠AOP=∠BOP
OM=OM

∴△OCM≌△ODM(SAS),
∴CM=DM.
故选B.
考点梳理
角平分线的性质;全等三角形的判定与性质.
根据角平分线上的点到角的两边的距离相等可得PC=PD,再利用“HL”证明△POC和△POD全等,根据全等三角形对应边相等可得到OC=OD,然后利用“边角边”证明△OCM和△ODM全等,根据全等三角形对应边相等可得CM=DM.
本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,难点在于要二次证明三角形全等.
找相似题