试题
题目:
如图,已知在△ABC中,∠C=90°,点D是斜边AB的中点,AB=2BC,DE⊥AB交AC于E.
求证:BE平分∠ABC.
答案
证明:∵D是AB的中点,∴BD=
1
2
AB,
∵AB=2BC,∴BC=
1
2
AB,∴BD=BC,
又∵DE⊥AB,∠C=90°,∴∠C=∠BDE=90°,
又BE=BE,Rt△BDE≌Rt△BCE(HL),
∴∠DBE=∠EBC.
∴BE平分∠ABC.
证明:∵D是AB的中点,∴BD=
1
2
AB,
∵AB=2BC,∴BC=
1
2
AB,∴BD=BC,
又∵DE⊥AB,∠C=90°,∴∠C=∠BDE=90°,
又BE=BE,Rt△BDE≌Rt△BCE(HL),
∴∠DBE=∠EBC.
∴BE平分∠ABC.
考点梳理
考点
分析
点评
专题
角平分线的性质.
由AB=2BC,点D是斜边AB的中点,可求得BD=BC,又BE=BE,可证Rt△BDE≌Rt△BCE(HL),∴∠DBE=∠EBC,∴BE平分∠ABC.
本题考查了角平分线的性质,三角形全等判定及性质;解题要根据题意分析边、角之间的关系,由已知能够注意到BD=BC是解决的关键.
证明题.
找相似题
(2011·恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
(2000·安徽)如图,直线l
1
、l
2
、l
3
表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
(2009·临沂一模)如图,在△ABC中,点Q、P分别是边AC、BC上的点,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,且PR=PS,则下列结论:①AP平分∠BAC;②QP∥AB;③AS=AR;④△BPR≌△QSP,其中正确的有( )
(2009·江西模拟)如图,若AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于E,则要求AB与CD之间的距离,只需测量出( )
如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )