试题
题目:
如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,求证:∠EAB=∠EAD.
答案
证明:如图,过点E作EF⊥AD于F,
∵∠C=90°,DE平分∠ADC,
∴CE=EF,
∵E是BC的中点,
∴BE=CE,
∴BE=EF,
又∵∠B=90°,
∴点E在∠BAD的平分线上,
∴∠EAB=∠EAD.
证明:如图,过点E作EF⊥AD于F,
∵∠C=90°,DE平分∠ADC,
∴CE=EF,
∵E是BC的中点,
∴BE=CE,
∴BE=EF,
又∵∠B=90°,
∴点E在∠BAD的平分线上,
∴∠EAB=∠EAD.
考点梳理
考点
分析
点评
专题
角平分线的性质.
过点E作EF⊥AD于F,根据角平分线上的点到角的两边的距离相等可得CE=EF,然后求出BE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可.
本题考查了角平分线上的点到角的两边的距离相等,到角的两边距离相等的点在角的平分线上,熟记角平分线的性质与判定是解题的关键.
证明题.
找相似题
(2011·恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
(2000·安徽)如图,直线l
1
、l
2
、l
3
表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
(2009·临沂一模)如图,在△ABC中,点Q、P分别是边AC、BC上的点,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,且PR=PS,则下列结论:①AP平分∠BAC;②QP∥AB;③AS=AR;④△BPR≌△QSP,其中正确的有( )
(2009·江西模拟)如图,若AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于E,则要求AB与CD之间的距离,只需测量出( )
如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )