试题

题目:
如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)
(2)如图③,在△ABC中,∠B=60°,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
青果学院
答案
青果学院解:图①如图所示;
(1)FE=FD;

(2)如图,过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴FG=FH=FK,
在四边形BGFH中,∠GFH=360°-60°-90°×2=120°,
∵AD、CE分别是∠BAC、∠BCA的平分线,∠B=60°,
∴∠FAC+∠FCA=
1
2
(180°-60°)=60°,
在△AFC中,∠AFC=180°-(∠FAC+∠FCA)=180°-60°=120°,
∴∠EFD=∠AFC=120°,
∴∠EFG=∠DFH,
在△EFG和△DFH中,
∠EFG=∠DFH
∠EGF=∠DHF=90°
FG=FH

∴△EFG≌△DFH(AAS),
∴FE=FD.
青果学院解:图①如图所示;
(1)FE=FD;

(2)如图,过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴FG=FH=FK,
在四边形BGFH中,∠GFH=360°-60°-90°×2=120°,
∵AD、CE分别是∠BAC、∠BCA的平分线,∠B=60°,
∴∠FAC+∠FCA=
1
2
(180°-60°)=60°,
在△AFC中,∠AFC=180°-(∠FAC+∠FCA)=180°-60°=120°,
∴∠EFD=∠AFC=120°,
∴∠EFG=∠DFH,
在△EFG和△DFH中,
∠EFG=∠DFH
∠EGF=∠DHF=90°
FG=FH

∴△EFG≌△DFH(AAS),
∴FE=FD.
考点梳理
角平分线的性质.
图①根据角平分线上的点到角的两边的距离相等,过点P作PA⊥OM于A,作PB⊥ON于B,△POA和△POB即为关于直线OP对称的全等三角形;
(1)猜想FE=FD;
(2)过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,根据角平分线上的点到角的两边的距离相等可得FG=FH=FK,根据四边形的内角和定理求出∠GFH=120°,再根据三角形的内角和定理求出∠AFC=120°,根据对顶角相等求出∠EFD=120°,然后求出∠EFG=∠DFH,再利用“角角边”证明△EFG和△DFH全等,根据全等三角形对应边相等可得FE=FD.
本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键,也是本题的难点.
找相似题