答案
证明:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.

∵∠A=60°,
∴∠ACB+∠ABC=120°,
∵CD,BE是角平分线,
∴∠BCG+∠CBG=120°÷2=60°,
∴∠CGB=∠EGD=120°,
∵G是∠ACB平分线上一点,
∴GN=GF,
同理,GF=GM,
∴GN=GM,
∴AG是∠CAB的平分线,
∴∠GAM=∠GAN=30°,
∴∠NGM=∠NGA+∠AGM=60°+60°=120°,
∴∠EGD=∠NGM=120°,
∴∠EGN=∠DGM,
又∵GN=GM,
∴Rt△EGN≌Rt△DGM(AAS),
∴GE=GD.
证明:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.

∵∠A=60°,
∴∠ACB+∠ABC=120°,
∵CD,BE是角平分线,
∴∠BCG+∠CBG=120°÷2=60°,
∴∠CGB=∠EGD=120°,
∵G是∠ACB平分线上一点,
∴GN=GF,
同理,GF=GM,
∴GN=GM,
∴AG是∠CAB的平分线,
∴∠GAM=∠GAN=30°,
∴∠NGM=∠NGA+∠AGM=60°+60°=120°,
∴∠EGD=∠NGM=120°,
∴∠EGN=∠DGM,
又∵GN=GM,
∴Rt△EGN≌Rt△DGM(AAS),
∴GE=GD.