答案
B

解:①假设AF=FC.则∠1=∠4.
∵AD、CE是△ABC的角平分线,
∴∠BAC=2∠1,∠BCA=2∠4,
∴∠BAC=∠BCA.
∴当∠BAC≠∠BCA时,该结论不成立;
故①不一定正确;
②假设△AEF≌△CDF,则∠2=∠3.
同①,当∠BAC=∠BCA时,该结论成立,
∴当∠BAC≠∠BCA时,该结论不成立;
故②不一定正确;
③在AC上取AG=AE,连接FG,
∵AD平分∠BAC,
∴∠1=∠2,
在△AEF与△AGF中,
,
∴△AEF≌△AGF(SAS),
∴∠AFE=∠AFG;
∵AD、CE分别平分∠BAC、∠ACB,
∴∠4+∠1=
∠ACB+
∠BAC=
(∠ACB+∠BAC)=
(180°-∠B)=60°
则∠AFC=180°-∠ECA-∠DAC=120°;
∴∠AFC=∠DFE=120°,∠AFE=∠CFD=∠AFG=60°,
则∠CGF=60°,
∴∠CFD=∠CFG,
在△GFC与△DFC中,
,
∴△GFC≌△DFC(ASA),
∴DC=GC,
∵AC=AG+GC,
∴AC=AE+CD.
故③正确;
④由③知,∠AFC=180°-∠ECA-∠DAC=120°,即∠AFC=120°;
故④正确;
综上所述,正确的结论有2个.
故选:B.