试题
题目:
在正方形ABCD所在的平面内有一点P,使△PAB、△PBC、△PCD、△PDA都是等腰三角形,具有这样性质的点共有多少个?试画图说明.
答案
解:9个.两条对角线的交点是一个.
以四个顶点为圆心以边长为半径画圆,在正方形里面和外面的交点一共有8个.
这些点就是要求的点.
解:9个.两条对角线的交点是一个.
以四个顶点为圆心以边长为半径画圆,在正方形里面和外面的交点一共有8个.
这些点就是要求的点.
考点梳理
考点
分析
点评
作图—应用与设计作图.
根据正方形的性质可得,满足这样的点首先有:两条对角线的交点;再以四个顶点为圆心以边长为半径画圆,在正方形里面和外面的交点一共有8个.根据半径相等,这些点就是要求的点.
此题主要考查正方形的性质和等腰三角形的判定.
找相似题
如图:某山区有三个村庄A、B、C,现在要建一座希望小学,使三个村庄的孩子上学所走的路程一样,学校的位置应选在( )
如图,为了促进当地经济发展,某地要在三条公路经过的平地上修建一个物资仓库.仓库计划建在3号公路上,要使仓库到1、2号公路的距离相等,则可修建仓库的地点有( )
如图,三条公路两两相交,某物流公司现要修建一个货物中转站,使它到的距离相等,这个货物中转站可选择的位置共有( )个.
A、B、C分别表示三个村庄,在社会主义新农村建设中,为丰富群众生活,拟建一个文化活动中心,要求三个村庄到活动中心的距离相等,则活动中心P的位置应是( )
如图,一块边长为5cm的正方形钢板的一角被割去一个边长为1cm的小正方形.一条直线把这块钢板分为面积相等的两部分.则这样的直线有( )条.