试题
题目:
如图,两个班的学生分别在M、N两处参加植树劳动,现要在道路AB、AC的交叉区域内设一茶水供应点P.为节省劳力,要求P到两道路的距离相等,且P到M、N的距离的和最小,问点P应设在何处(保留作图痕迹).
答案
解:如图所示:点P即为所求.
解:如图所示:点P即为所求.
考点梳理
考点
分析
点评
作图—应用与设计作图.
首先画出∠CAB的角平分线AF,再作M关于AF的对称点M′,连接NM′,交AF于一点,这一点就是P点.
此题主要考查了作图与应用作图,关键是熟练掌握角平分线的作法与作对称点的方法.
找相似题
如图:某山区有三个村庄A、B、C,现在要建一座希望小学,使三个村庄的孩子上学所走的路程一样,学校的位置应选在( )
如图,为了促进当地经济发展,某地要在三条公路经过的平地上修建一个物资仓库.仓库计划建在3号公路上,要使仓库到1、2号公路的距离相等,则可修建仓库的地点有( )
如图,三条公路两两相交,某物流公司现要修建一个货物中转站,使它到的距离相等,这个货物中转站可选择的位置共有( )个.
A、B、C分别表示三个村庄,在社会主义新农村建设中,为丰富群众生活,拟建一个文化活动中心,要求三个村庄到活动中心的距离相等,则活动中心P的位置应是( )
如图,一块边长为5cm的正方形钢板的一角被割去一个边长为1cm的小正方形.一条直线把这块钢板分为面积相等的两部分.则这样的直线有( )条.