题目:
(1)如图,已知△ABC,请你作出AB边上的高CD,AC边上的中线BE,角平分线AF(不写作法,保留痕迹)
(2)如图,直线l表示一条公路,点A,点B表示两个村庄.现要在公路上造一个车站,并使车站到两个村庄A,B的距离之和最短,问车站建在何处?请在图上标明地点,并说明理由.(要求尺规作图,不写作法)
答案
解:(1)所画图形如下所示:

(2)画出点A关于直线l的对称点A′,连接A′B交l于点C,连接AC,
∵A、A′关于直线l对称,
∴AC=A′C,
∴AC+BC=A′B,
由两点之间线段最短可知,线段A′B的长即为AC+BC的最小值,故C点即为所求点.

解:(1)所画图形如下所示:

(2)画出点A关于直线l的对称点A′,连接A′B交l于点C,连接AC,
∵A、A′关于直线l对称,
∴AC=A′C,
∴AC+BC=A′B,
由两点之间线段最短可知,线段A′B的长即为AC+BC的最小值,故C点即为所求点.