题目:
(2006·锦州)在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图):画线段AB,分别以点A,B为圆心,以大于
AB的长为半径画弧,两弧相交于点C,连接AC;再以点C为圆心,以A

C长为半径画弧,交AC延长线于点D,连接DB,则△ABD就是直角三角形.
(1)请你说明其中的道理;
(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).
答案

解:(1)理由:
方法一:连接BC,
由作图可知,AC=BC=CD
∴∠A=∠ABC,∠CBD=∠CDB(1分)
∵∠A+∠ABC+∠CBD+∠CDB=180°
∴2∠ABC+2∠CBD=180°
∴∠ABC+∠CBD=90度.即∠ABD=90°
∴△ABD是直角三角形;(3分)
方法二:连接BC,
由作图可知,AC=BC=CD,AD=AC+CD(1分)

∴BC=
AD(2分)
∴△ABD是直角三角形;(3分)
(2)如图所示,(7分)
则△EFG就是所求作的直角三角形,其中∠EGF=30°.

解:(1)理由:
方法一:连接BC,
由作图可知,AC=BC=CD
∴∠A=∠ABC,∠CBD=∠CDB(1分)
∵∠A+∠ABC+∠CBD+∠CDB=180°
∴2∠ABC+2∠CBD=180°
∴∠ABC+∠CBD=90度.即∠ABD=90°
∴△ABD是直角三角形;(3分)
方法二:连接BC,
由作图可知,AC=BC=CD,AD=AC+CD(1分)

∴BC=
AD(2分)
∴△ABD是直角三角形;(3分)
(2)如图所示,(7分)
则△EFG就是所求作的直角三角形,其中∠EGF=30°.