试题

题目:
(2005·浙江)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是(  )
x 3.23 3.24 3.25 3.26
ax2+bx+c -0.06 -0.02 0.03 0.09




答案
C
解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,
函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;
由表中数据可知:y=0在y=-0.02与y=0.03之间,
∴对应的x的值在3.24与3.25之间即3.24<x<3.25.
故选C.
考点梳理
图象法求一元二次方程的近似根.
根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.
掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.
压轴题.
找相似题