试题
题目:
如图,用一个半径为R,圆心角为90°的扇形做成一个圆锥的侧面,设圆锥底面半径为r,则R:r=
4:1
4:1
.
答案
4:1
解:
90πR
180
=2πr
,
解得R:r=4:1.
考点梳理
考点
分析
点评
弧长的计算.
利用底面周长=展开图的弧长可得.
解答本题的关键是有确定底面周长=展开图的弧长这个等量关系.
找相似题
(2013·湖北)如果一个扇形的弧长是
4
3
π,半径是6,那么此扇形的圆心角为( )
(2012·泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为( )
(2012·日照)如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则
BB
′
的长为( )
(2011·珠海)圆心角为60°,且半径为3的扇形的弧长为( )
(2011·安顺)在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是( )