试题
题目:
(2012·崇左)如图,正方形ABCD的边长为1,其中弧DE、弧EF、弧FG的圆心依次为点A、B、C.
(1)求点D沿三条弧运动到点G所经过的路线长;
(2)判断直线GB与DF的位置关系,并说明理由.
答案
解:(1)根据弧长公式得所求路线长为:
90π×1
180
+
90π×2
180
+
90π×3
180
=3π.
(2)GB⊥DF.
理由如下:
在△FCD和△GCB中,
∵
CF=CG
∠FCD=∠GCB
CD=CB
,
∴△FCD≌△GCB(SAS),
∴∠G=∠F,
∵∠F+∠FDC=90°,
∴∠G+∠FDC=90°,
∴∠GHD=90°,
∴GB⊥DF.
解:(1)根据弧长公式得所求路线长为:
90π×1
180
+
90π×2
180
+
90π×3
180
=3π.
(2)GB⊥DF.
理由如下:
在△FCD和△GCB中,
∵
CF=CG
∠FCD=∠GCB
CD=CB
,
∴△FCD≌△GCB(SAS),
∴∠G=∠F,
∵∠F+∠FDC=90°,
∴∠G+∠FDC=90°,
∴∠GHD=90°,
∴GB⊥DF.
考点梳理
考点
分析
点评
弧长的计算;全等三角形的判定与性质;正方形的性质.
(1)根据弧长的计算公式,代入运算即可.
(2)先证明△FCD≌△GCB,得出∠G=∠F,从而利用等量代换可得出∠GHD=90°,即GB⊥DF.
本题考查了弧长的计算、全等三角形的判定与性质,正方形的性质,解答本题的关键是熟练各个知识点,将所学知识融会贯通,难度一般.
找相似题
(2013·湖北)如果一个扇形的弧长是
4
3
π,半径是6,那么此扇形的圆心角为( )
(2012·泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为( )
(2012·日照)如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则
BB
′
的长为( )
(2011·珠海)圆心角为60°,且半径为3的扇形的弧长为( )
(2011·安顺)在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是( )