试题

题目:
青果学院(2013·沙市区一模)两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB边上的E′点时,
EE′
的长度为
π
3
π
3

答案
π
3

解:∵三角板是两块大小一样斜边为4且含有30°的角,
∴CE′是△ACB的中线,
∴CE′=BC=BE′=2,
∴△E′CB是等边三角形,
∴∠BCE′=60°,
∴∠ACE′=90°-60°=30°,
∴弧EF的长度为:
30π×2
180
=
π
3

故答案是:
π
3
考点梳理
旋转的性质;弧长的计算.
根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数;再根据弧长公式计算求解.
考查了含有30°角的直角三角形的性质,等边三角形的判定,旋转的性质和扇形面积的计算,本题关键是得到CE′是△ACB的中线.
找相似题