试题
题目:
(2013·烟台模拟)如图一小虫从P点出发绕边长为10cm的等边三角形ABC爬行一圈回到点P,在小虫爬行过程中,始终保持与三角形ABC的边的距离是2cm,求小虫爬过的路径的长是
(30+4π)cm
(30+4π)cm
.
答案
(30+4π)cm
解:小虫爬过的路径的长=10+10+10+
360·π·2
180
=(30+4π)cm.
故答案为(30+4π)cm.
考点梳理
考点
分析
点评
专题
弧长的计算.
小虫爬过的路径分为6个部分:与等边三角形平行且等于边长的三条线段,在每个三角形顶点以顶点为圆心、2cm为半径,圆心角为120°的三条弧,然后根据弧长公式计算即可.
本题考查了弧长的计算:弧长=
nπ·R
180
(n为弧所对的圆心角的度数,R为圆的半径).也考查了等边三角形的性质.
计算题.
找相似题
(2013·湖北)如果一个扇形的弧长是
4
3
π,半径是6,那么此扇形的圆心角为( )
(2012·泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为( )
(2012·日照)如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则
BB
′
的长为( )
(2011·珠海)圆心角为60°,且半径为3的扇形的弧长为( )
(2011·安顺)在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是( )