试题
题目:
(2013·宁德)如图,在Rt△ABC纸片中,∠C=90°,AC=BC=4,点P在AC上运动,将纸片沿PB折叠,得到点C的对应点D(P在C点时,点C的对应点是本身),则折叠过程对应点D的路径长是
2π
2π
.
答案
2π
解:∵∠C=90°,AC=BC,
∴△ABC是等腰直角三角形,
如图,点D的路径是以点B为圆心,以BC的长为半径的扇形,
路径长=
90·π·4
180
=2π.
故答案为:2π.
考点梳理
考点
分析
点评
翻折变换(折叠问题);弧长的计算.
根据翻折变换的性质以及△ABC是等腰直角三角形判断出点D的路径是以点B为圆心,以BC的长为半径的扇形,然后利用弧长公式列式计算即可得解.
本题考查了翻折变换的性质,弧长的计算,判断出点D的路径是扇形是解题的关键.
找相似题
(2013·湖北)如果一个扇形的弧长是
4
3
π,半径是6,那么此扇形的圆心角为( )
(2012·泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为( )
(2012·日照)如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则
BB
′
的长为( )
(2011·珠海)圆心角为60°,且半径为3的扇形的弧长为( )
(2011·安顺)在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是( )