试题

题目:
已知点C是线段BD上一动点,分别以线段BC和线段DC为边在BD同侧作等边△ABC和等边△CDE,⊙O是△ABC的外接圆.
(1)如图1,求证:CE为⊙O的切线;
(2)如图2,若△CDE的边DE所在的直线与⊙O切于点F,求CD:BC的值.
青果学院
答案
青果学院(1)证明:连结OC,如图1,
∵△ABC和△CDE都是等边三角形,
∴∠ACB=∠ECD=60°,
∴∠ACE=60°,
∵⊙O是等边△ABC的外接圆,
∴点O是等边△ABC的外心和内心,
∴∠ACO=
1
2
∠ACB=30°,
∴∠OCE=30°+60°=90°,
∴OC⊥CE,
∴CE为⊙O的切线;
(2)解:作OH⊥BC于H,连结OF、OC、FC,如图2,
∵OH⊥BC,
∴BH=CH,
设OH=a,则CH=
3
a,OC=2a,
∴BC=2
3
a,
∵DF与⊙O切于点F,
∴OF⊥FD,
∵△CDE为等边三角形,
∴∠CED=60°,∠D=60°,
∴∠CEF=120°,
而∠OCE=∠OFE=90°,
∴∠COF=60°,
∴△OCF为等边三角形,
∴∠OFC=60°,FC=OC=2a,
∴∠CFD=30°,
∴∠FCD=90°,
∴CD=
3
3
FC=
2
3
a
3

∴CD:BC=
2
3
a
3
:2
3
a=1:3.
青果学院(1)证明:连结OC,如图1,
∵△ABC和△CDE都是等边三角形,
∴∠ACB=∠ECD=60°,
∴∠ACE=60°,
∵⊙O是等边△ABC的外接圆,
∴点O是等边△ABC的外心和内心,
∴∠ACO=
1
2
∠ACB=30°,
∴∠OCE=30°+60°=90°,
∴OC⊥CE,
∴CE为⊙O的切线;
(2)解:作OH⊥BC于H,连结OF、OC、FC,如图2,
∵OH⊥BC,
∴BH=CH,
设OH=a,则CH=
3
a,OC=2a,
∴BC=2
3
a,
∵DF与⊙O切于点F,
∴OF⊥FD,
∵△CDE为等边三角形,
∴∠CED=60°,∠D=60°,
∴∠CEF=120°,
而∠OCE=∠OFE=90°,
∴∠COF=60°,
∴△OCF为等边三角形,
∴∠OFC=60°,FC=OC=2a,
∴∠CFD=30°,
∴∠FCD=90°,
∴CD=
3
3
FC=
2
3
a
3

∴CD:BC=
2
3
a
3
:2
3
a=1:3.
考点梳理
切线的判定与性质;等边三角形的性质.
(1)连结OC,根据等边三角形的性质得∠ACB=∠ECD=60°,则∠ACE=60°,再根据等边三角形的内外心重合得到∠ACO=30°,则∠OCE=90°,
然后根据切线的判定定理即可得到结论;
(2)作OH⊥BC于H,连结OF、OC、FC,根据垂径定理得BH=CH,设OH=a,则CH=
3
a,OC=2a,所以BC=2
3
a,OF⊥FD,由△CDE为等边三角形得∠CED=60°,∠D=60°,则∠CEF=120°,易得∠COF=60°,于是可判断△OCF为等边三角形,根据等边三角形的性质得∠OFC=60°,FC=OC=2a,可计算出∠CFD=30°,则∠FCD=90°,由此得到CD=
3
3
FC=
2
3
a
3
,然后计算CD:BC.
切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和含30度的直角三角形三边的关系.
证明题.
找相似题