试题
题目:
如图,在等腰△ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于点F,⊙O的半径为2cm,AB=AC=6cm,求∠A的度数.
答案
(1)证明:连接OD,则OB=OD,
∴∠1=∠2.
又∵AB=AC,
∴∠1=∠C,
∴∠2=∠C,
∴OD∥AC﹒
又∵DE⊥AC,
∴半径OD⊥DE﹒
∴DE是⊙O的切线;
(2)解:如图,连接OF.
∵⊙O与AC相切于点F,
∴半径OF⊥AC.
又∵AB=6cm,OF=OB=2cm,
∴AO=4cm,
∴AO=2OF,
∴∠A=30°.
(1)证明:连接OD,则OB=OD,
∴∠1=∠2.
又∵AB=AC,
∴∠1=∠C,
∴∠2=∠C,
∴OD∥AC﹒
又∵DE⊥AC,
∴半径OD⊥DE﹒
∴DE是⊙O的切线;
(2)解:如图,连接OF.
∵⊙O与AC相切于点F,
∴半径OF⊥AC.
又∵AB=6cm,OF=OB=2cm,
∴AO=4cm,
∴AO=2OF,
∴∠A=30°.
考点梳理
考点
分析
点评
切线的判定与性质;等腰三角形的性质.
(1)如图,连接OD,欲证明DE是⊙O的切线,只需证明OD⊥DE即可;
(2)连接OF.根据切线的性质构建直角△AFO,易求AO=2OF,故由“直角三角形中,30度角所对的直角边等于斜边的一半”求得∠A=30°.
本题考查了切线的判定与性质,等腰三角形的性质.常见的辅助线的:
①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2008·闸北区二模)下列说法中,正确的是( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
(2013·南昌)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.
(2013·聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=
4
3
,BE=2.求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.