试题
题目:
如图,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分线交AB于点O,以O为
圆心的⊙O与AC相切于点D.
(1)求证:⊙0与BC相切;
(2)当AC=2时,求⊙O的半径.
答案
解:(1)过点O作OF⊥BC,垂直为F,连接OD,
∵AC是圆的切线,
∴OD⊥AC,
又OC为∠ACB的平分线,
∴OF=OD,
∴BC与⊙0相切;
(2)由(1)知BC与⊙0相切,
∵D、F为切点,
∴OD⊥AC,OF⊥BC,OD=OF,
S
△ABC
=S
△AOC
+S
△BOC
=
1
2
AC·BC=
1
2
AC·OD+
1
2
BC·OF
∵AC+BC=8,AC=2,
∴BC=6,
∴
1
2
×2×6=
1
2
×2×OD+
1
2
×6×OF,
而OD=OF.
∴OD=
3
2
,
即⊙O的半径为
3
2
.
解:(1)过点O作OF⊥BC,垂直为F,连接OD,
∵AC是圆的切线,
∴OD⊥AC,
又OC为∠ACB的平分线,
∴OF=OD,
∴BC与⊙0相切;
(2)由(1)知BC与⊙0相切,
∵D、F为切点,
∴OD⊥AC,OF⊥BC,OD=OF,
S
△ABC
=S
△AOC
+S
△BOC
=
1
2
AC·BC=
1
2
AC·OD+
1
2
BC·OF
∵AC+BC=8,AC=2,
∴BC=6,
∴
1
2
×2×6=
1
2
×2×OD+
1
2
×6×OF,
而OD=OF.
∴OD=
3
2
,
即⊙O的半径为
3
2
.
考点梳理
考点
分析
点评
切线的判定与性质.
(1)要证⊙0与BC相切,只要证明点O到BC的距离等于圆的半径即可,作出点O到BC的距离,利用角平分线的性质可以进行证明;
(2)由AC=2,AC+BC=8可求出BC,观察图形发现S
△ABC
=S
△AOC
+S
△BOC
,可利用面积法求得圆的半径.
本题考查了切线的判定及性质;利用等积法求圆的半径是很巧妙的方法,也比较重要,希望同学们认真掌握.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2008·闸北区二模)下列说法中,正确的是( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
(2013·南昌)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.
(2013·聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=
4
3
,BE=2.求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.