试题
题目:
已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C
(1)如图①,若AB=1,∠P=30°,求AP的长(结果保留根号);
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
答案
(1)解:∵AB是⊙O的直径,AP是⊙O的切线,
∴BA⊥PA,
∴∠BAP=90°,
∵AB=1,∠P=30°,
∴AP=
3
AB=
3
;
(2)证明:连结OC、AC,如图,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴△ACP为直角三角形,
∵D为AP的中点,
∴DC=DA,
∴∠DCA=∠DAC,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠OCA+∠DAC=∠OAC+∠DAC,
即∠OCD=∠OAD=90°,
∴OC⊥DC,
∴直线CD是⊙O的切线.
(1)解:∵AB是⊙O的直径,AP是⊙O的切线,
∴BA⊥PA,
∴∠BAP=90°,
∵AB=1,∠P=30°,
∴AP=
3
AB=
3
;
(2)证明:连结OC、AC,如图,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴△ACP为直角三角形,
∵D为AP的中点,
∴DC=DA,
∴∠DCA=∠DAC,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠OCA+∠DAC=∠OAC+∠DAC,
即∠OCD=∠OAD=90°,
∴OC⊥DC,
∴直线CD是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定与性质;勾股定理.
(1)由AP是⊙O的切线,根据切线的性质得∠BAP=90°,然后根据含30度的直角三角形三边的关系可得到AP的长;
(2)连结OC、AC,由AB是⊙O的直径,根据圆周角定理得∠ACB=90°,则△ACP为直角三角形,再根据直角三角形斜边上中线的性质得DC=DA,所以∠DCA=∠DAC,而∠OCA=∠OAC,于是得∠OCA+∠DAC=∠OAC+∠DAC,即∠OCD=∠OAD=90°,然后根据切线的判定定理得到直线CD是⊙O的切线.
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.也考查了圆周角定理.
证明题.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2008·闸北区二模)下列说法中,正确的是( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
(2013·南昌)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.
(2013·聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=
4
3
,BE=2.求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.