试题

题目:
青果学院(2011·平谷区二模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC于点E.
(1)求证DE是⊙O的切线;
(2)若∠BAC=120°,AB=2,求△DEC的面积.
答案
青果学院(1)证明:连接OD.
∵OD=OB,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
又∵DE⊥AC,
∴∠DEC=90°,
∴∠ODE=∠DEC=90°,
∴OD⊥DE.
∴DE是⊙O的切线;

(2)解:连接AD,
∵AB为直径,
∴∠ADB=90°.
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∴AD=
1
2
AB=1

∵在Rt△AED中,DE⊥AC,∠DAE=60°,
∴AE=
1
2
AD=
1
2
,DE=sin60°×AD=
3
2

∴EC=2-
1
2
=
3
2

S△DEC=
1
2
×
3
2
×
3
2
=
3
3
8

青果学院(1)证明:连接OD.
∵OD=OB,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
又∵DE⊥AC,
∴∠DEC=90°,
∴∠ODE=∠DEC=90°,
∴OD⊥DE.
∴DE是⊙O的切线;

(2)解:连接AD,
∵AB为直径,
∴∠ADB=90°.
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∴AD=
1
2
AB=1

∵在Rt△AED中,DE⊥AC,∠DAE=60°,
∴AE=
1
2
AD=
1
2
,DE=sin60°×AD=
3
2

∴EC=2-
1
2
=
3
2

S△DEC=
1
2
×
3
2
×
3
2
=
3
3
8
考点梳理
切线的判定与性质;圆周角定理.
(1)连接OD,由于OB=OD,易得∠B=∠ODB,而由AB=AC可证∠B=∠C,于是∠ODB=∠C,那么OD∥AC,而DE⊥AC,易证∠ODE=∠DEC=90°,从而可证DE是⊙O切线;
(2)连接AD,由于AB是直径,那么∠ADB=90°,而AB=AC,且∠BAC=120°,易求∠B=∠C=30°,∠DAC=60°,利用直角三角形中30°的角所对的边等于斜边的一半可得AD=
1
2
AB=1
,在Rt△ADE中,利用特殊三角函数值可求AE、DE,从而易求CE,再利用三角形面积公式可求S△DEC
本题考查了平行线的判定和性质、等腰三角形三线合一定理、切线的判定和性质、直角三角形中30角所对的边等于斜边的一半.解题的关键是连接OD、AD,证明OD∥AC.
计算题;证明题.
找相似题