试题
题目:
(2009·辽阳)如图,已知AC是⊙O的弦,AB为⊙0的直径,点D在AB的延长线上,∠A=∠D=30°
(1)求证:CD是⊙O的切线;
(2)当BD=5时,求⊙O的半径长.
答案
(1)证明:连接OC,
∵∠A=30°,
∴∠COD=2∠A=2×30°=60°,
∵∠D=30°,
∴∠OCD=180°-60°-30°=90°,
∴OC⊥CD,
∵OC是○O的半径.
∴CD是⊙O的切线;
(2)解:由(1)得:∠OCD=90°,
在直角△OCD中,
∵∠D=30°,
∴OD=2OC,
∵OC=OB,
∴OD=2OB,
∴OB=BD=5,
∴⊙O的半径是5.
(1)证明:连接OC,
∵∠A=30°,
∴∠COD=2∠A=2×30°=60°,
∵∠D=30°,
∴∠OCD=180°-60°-30°=90°,
∴OC⊥CD,
∵OC是○O的半径.
∴CD是⊙O的切线;
(2)解:由(1)得:∠OCD=90°,
在直角△OCD中,
∵∠D=30°,
∴OD=2OC,
∵OC=OB,
∴OD=2OB,
∴OB=BD=5,
∴⊙O的半径是5.
考点梳理
考点
分析
点评
专题
切线的判定与性质;含30度角的直角三角形;圆周角定理.
(1)连接OC,根据三角形的内角和与外角的性质,证得∠OCD=90°,即可证得CD是圆的切线;
(2)根据直角三角形有一个角是30度,30度的锐角所对的直角边等于斜边的一半,即可证得OB=BD.
本题主要考查了切线的判定定理,以及直角三角形的性质,证明切线常用的方法是根据切线的判定定理转化为证明垂直关系.
几何综合题;压轴题.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2008·闸北区二模)下列说法中,正确的是( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
(2013·南昌)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.
(2013·聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=
4
3
,BE=2.求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.